Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Sci Rep ; 13(1): 1512, 2023 01 27.
Article in English | MEDLINE | ID: covidwho-2221867

ABSTRACT

Accurate and fast detection of viruses is crucial for controlling outbreaks of many diseases; therefore, to date, numerous sensing systems for their detection have been studied. On top of the performance of these sensing systems, the availability of biorecognition elements specific to especially the new etiological agents is an additional fundamental challenge. Therefore, besides high sensitivity and selectivity, such advantages as the size of the sensor and possibly low volume of analyzed samples are also important, especially at the stage of evaluating the receptor-target interactions in the case of new etiological agents when typically, only tiny amounts of the receptor are available for testing. This work introduces a real-time, highly miniaturized sensing solution based on microcavity in-line Mach-Zehnder interferometer (µIMZI) induced in optical fiber for SARS-CoV-2 virus-like particles detection. The assay is designed to detect conserved regions of the SARS-CoV-2 viral particles in a sample with a volume as small as hundreds of picoliters, reaching the detection limit at the single ng per mL level.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Optical Fibers , SARS-CoV-2 , Interferometry , COVID-19/diagnosis
2.
Viruses ; 14(6)2022 06 17.
Article in English | MEDLINE | ID: covidwho-1911643

ABSTRACT

This study aims to characterize the intermediates, and the final product (FP) obtained during the production of human intramuscular hyperimmune gamma globulin anti-SARS-CoV-2 (hIHGG anti-SARS-CoV-2) and to determine its stability. Material and methods: hIHGG anti-SARS-CoV-2 was fractionated from 270 convalescent plasma donations with the Cohn method. Prior to fractionation, the plasma was inactivated (Theraflex MB Plasma). Samples were defined using enzyme immunoassays (EIA) for anti-S1, anti-RBD S1, and anti-N antibodies, and neutralization assays with SARS-CoV-2 (VN) and pseudoviruses (PVN, decorated with SARS-CoV-2 S protein). Results were expressed as a titer (EIA) or 50% of the neutralization titer (IC50) estimated in a four-parameter nonlinear regression model. Results: Concentration of anti-S1 antibodies in plasma was similar before and after inactivation. Following fractionation, the anti-S1, anti-RBD, and anti-N (total tests) titers in FP were concentrated approximately 15-fold from 1:4 to 1:63 (1800 BAU/mL), 7-fold from 1:111 to 1:802 and from 1:13 to 1:88, respectively. During production, the IgA (anti-S1) antibody titer was reduced to an undetectable level and the IgM (anti-RBD) titer from 1:115 to 1:24. The neutralizing antibodies (nAb) titer increased in both VN (from 1:40 to 1:160) and PVN (IC50 from 63 to 313). The concentration of specific IgG in the FP did not change significantly for 14 months. Conclusions: The hIHGG anti-SARS-CoV-2 was stable, with concentration up to approximately 15-fold nAb compared to the source plasma pool.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Spike Glycoprotein, Coronavirus , gamma-Globulins , COVID-19 Serotherapy
3.
Viruses ; 14(6):1328, 2022.
Article in English | MDPI | ID: covidwho-1894074

ABSTRACT

This study aims to characterize the intermediates, and the final product (FP) obtained during the production of human intramuscular hyperimmune gamma globulin anti-SARS-CoV-2 (hIHGG anti-SARS-CoV-2) and to determine its stability. Material and methods: hIHGG anti-SARS-CoV-2 was fractionated from 270 convalescent plasma donations with the Cohn method. Prior to fractionation, the plasma was inactivated (Theraflex MB Plasma). Samples were defined using enzyme immunoassays (EIA) for anti-S1, anti-RBD S1, and anti-N antibodies, and neutralization assays with SARS-CoV-2 (VN) and pseudoviruses (PVN, decorated with SARS-CoV-2 S protein). Results were expressed as a titer (EIA) or 50% of the neutralization titer (IC50) estimated in a four-parameter nonlinear regression model. Results: Concentration of anti-S1 antibodies in plasma was similar before and after inactivation. Following fractionation, the anti-S1, anti-RBD, and anti-N (total tests) titers in FP were concentrated approximately 15-fold from 1:4 to 1:63 (1800 BAU/mL), 7-fold from 1:111 to 1:802 and from 1:13 to 1:88, respectively. During production, the IgA (anti-S1) antibody titer was reduced to an undetectable level and the IgM (anti-RBD) titer from 1:115 to 1:24. The neutralizing antibodies (nAb) titer increased in both VN (from 1:40 to 1:160) and PVN (IC50 from 63 to 313). The concentration of specific IgG in the FP did not change significantly for 14 months. Conclusions: The hIHGG anti-SARS-CoV-2 was stable, with concentration up to approximately 15-fold nAb compared to the source plasma pool.

4.
iScience ; 25(7): 104594, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1895108

ABSTRACT

Recent studies showed that SARS-CoV-2 can infect adult human pancreas and trigger pancreatic damage. Here, using human fetal pancreas samples and 3D differentiation of human pluripotent cells into pancreatic endocrine cells, we determined that SARS-CoV-2 receptors ACE2, TMPRSS2, and NRP1 are expressed in precursors of insulin-producing pancreatic ß-cells, rendering them permissive to SARS-CoV-2 infection. We also show that SARS-CoV-2 enters and undergoes efficient replication in human multipotent pancreatic and endocrine progenitors in vitro. Moreover, we investigated mechanisms by which SARS-CoV-2 enters pancreatic cells, and found that ACE2 mediates the entry, while NRP1 and TMPRSS2 do not. Surprisingly, we found that in pancreatic progenitors, SARS-CoV-2 enters cells via cathepsin-dependent endocytosis, which is a different route than in respiratory tract. Therefore, pancreatic spheroids might serve as a model to study candidate drugs for endocytosis-mediated viral entry inhibition and to investigate whether SARS-CoV-2 infection may affect pancreas development, possibly causing lifelong health consequences.

5.
Cell Chem Biol ; 29(5): 774-784.e8, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1616412

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has been socially and economically devastating. Despite an unprecedented research effort and available vaccines, effective therapeutics are still missing to limit severe disease and mortality. Using high-throughput screening, we identify acriflavine (ACF) as a potent papain-like protease (PLpro) inhibitor. NMR titrations and a co-crystal structure confirm that acriflavine blocks the PLpro catalytic pocket in an unexpected binding mode. We show that the drug inhibits viral replication at nanomolar concentration in cellular models, in vivo in mice and ex vivo in human airway epithelia, with broad range activity against SARS-CoV-2 and other betacoronaviruses. Considering that acriflavine is an inexpensive drug approved in some countries, it may be immediately tested in clinical trials and play an important role during the current pandemic and future outbreaks.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Acriflavine , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Mice , Molecular Docking Simulation , Pandemics
6.
Front Microbiol ; 12: 732998, 2021.
Article in English | MEDLINE | ID: covidwho-1506502

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a major epidemic threat since the beginning of 2020. Efforts to combat the virus and the associated coronavirus disease 2019 (COVID-19) disease are being undertaken worldwide. To facilitate the research on the virus itself, a number of surrogate systems have been developed. Here, we report the efficient production of SARS-CoV-2 virus-like particles (VLPs) in insect cells. Contrary to widely used pseudovirus particles, where only one coronaviral protein is displayed within a heterologous scaffold, developed VLPs are structurally similar to the native virus and allow for more throughput studies on the biology of the infection. On the other hand, being devoid of the viral genome, VLPs are unable to replicate and thus safe to work with. Importantly, this is the first report showing that SARS-CoV-2 VLPs can be efficiently produced in insect cells and purified using scalable affinity chromatography.

7.
Molecules ; 26(19)2021 Oct 07.
Article in English | MEDLINE | ID: covidwho-1463770

ABSTRACT

The COVID-19 pandemic outbreak prompts an urgent need for efficient therapeutics, and repurposing of known drugs has been extensively used in an attempt to get to anti-SARS-CoV-2 agents in the shortest possible time. The glycoside rutin shows manifold pharmacological activities and, despite its use being limited by its poor solubility in water, it is the active principle of many pharmaceutical preparations. We herein report our in silico and experimental investigations of rutin as a SARS-CoV-2 Mpro inhibitor and of its water solubility improvement obtained by mixing it with l-arginine. Tests of the rutin/l-arginine mixture in a cellular model of SARS-CoV-2 infection highlighted that the mixture still suffers from unfavorable pharmacokinetic properties, but nonetheless, the results of this study suggest that rutin might be a good starting point for hit optimization.


Subject(s)
Antiviral Agents/pharmacology , Arginine/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Rutin/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Coronavirus 3C Proteases/metabolism , Humans , Molecular Docking Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/metabolism , Solubility
8.
Sci Rep ; 11(1): 20012, 2021 10 08.
Article in English | MEDLINE | ID: covidwho-1462029

ABSTRACT

There are currently no cures for coronavirus infections, making the prevention of infections the only course open at the present time. The COVID-19 pandemic has been difficult to prevent, as the infection is spread by respiratory droplets and thus effective, scalable and safe preventive interventions are urgently needed. We hypothesise that preventing viral entry into mammalian nasal epithelial cells may be one way to limit the spread of COVID-19. Here we show that N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (GCPQ), a positively charged polymer that has been through an extensive Good Laboratory Practice toxicology screen, is able to reduce the infectivity of SARS-COV-2 in A549ACE2+ and Vero E6 cells with a log removal value of - 3 to - 4 at a concentration of 10-100 µg/ mL (p < 0.05 compared to untreated controls) and to limit infectivity in human airway epithelial cells at a concentration of 500 µg/ mL (p < 0.05 compared to untreated controls). In vivo studies using transgenic mice expressing the ACE-2 receptor, dosed nasally with SARS-COV-2 (426,000 TCID50/mL) showed a trend for nasal GCPQ (20 mg/kg) to inhibit viral load in the respiratory tract and brain, although the study was not powered to detect statistical significance. GCPQ's electrostatic binding to the virus, preventing viral entry into the host cells, is the most likely mechanism of viral inhibition. Radiolabelled GCPQ studies in mice show that at a dose of 10 mg/kg, GCPQ has a long residence time in mouse nares, with 13.1% of the injected dose identified from SPECT/CT in the nares, 24 h after nasal dosing. With a no observed adverse effect level of 18 mg/kg in rats, following a 28-day repeat dose study, clinical testing of this polymer, as a COVID-19 prophylactic is warranted.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Nasal Sprays , SARS-CoV-2/drug effects , A549 Cells , Animals , Antiviral Agents/administration & dosage , Chlorocebus aethiops , Humans , Male , Methylation , Mice, Inbred BALB C , Mice, Transgenic , SARS-CoV-2/physiology , Surface-Active Agents/administration & dosage , Surface-Active Agents/therapeutic use , Vero Cells , Viral Load/drug effects
9.
PLoS Pathog ; 16(12): e1008959, 2020 12.
Article in English | MEDLINE | ID: covidwho-1388958

ABSTRACT

SARS-CoV-2 genome annotation revealed the presence of 10 open reading frames (ORFs), of which the last one (ORF10) is positioned downstream of the N gene. It is a hypothetical gene, which was speculated to encode a 38 aa protein. This hypothetical protein does not share sequence similarity with any other known protein and cannot be associated with a function. While the role of this ORF10 was proposed, there is growing evidence showing that the ORF10 is not a coding region. Here, we identified SARS-CoV-2 variants in which the ORF10 gene was prematurely terminated. The disease was not attenuated, and the transmissibility between humans was maintained. Also, in vitro, the strains replicated similarly to the related viruses with the intact ORF10. Altogether, based on clinical observation and laboratory analyses, it appears that the ORF10 protein is not essential in humans. This observation further proves that the ORF10 should not be treated as the protein-coding gene, and the genome annotations should be amended.


Subject(s)
COVID-19/virology , Genome, Viral , Mutation , Open Reading Frames/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics , Virus Replication , Adult , COVID-19/epidemiology , COVID-19/genetics , Codon, Nonsense , Female , Humans , In Vitro Techniques , Male , Middle Aged , Poland/epidemiology , SARS-CoV-2/isolation & purification , Viral Proteins/metabolism
10.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1288904

ABSTRACT

The development of new antiviral drugs against SARS-CoV-2 is a valuable long-term strategy to protect the global population from the COVID-19 pandemic complementary to the vaccination. Considering this, the viral main protease (Mpro) is among the most promising molecular targets in light of its importance during the viral replication cycle. The natural flavonoid quercetin 1 has been recently reported to be a potent Mpro inhibitor in vitro, and we explored the effect produced by the introduction of organoselenium functionalities in this scaffold. In particular, we report here a new synthetic method to prepare previously inaccessible C-8 seleno-quercetin derivatives. By screening a small library of flavonols and flavone derivatives, we observed that some compounds inhibit the protease activity in vitro. For the first time, we demonstrate that quercetin (1) and 8-(p-tolylselenyl)quercetin (2d) block SARS-CoV-2 replication in infected cells at non-toxic concentrations, with an IC50 of 192 µM and 8 µM, respectively. Based on docking experiments driven by experimental evidence, we propose a non-covalent mechanism for Mpro inhibition in which a hydrogen bond between the selenium atom and Gln189 residue in the catalytic pocket could explain the higher Mpro activity of 2d and, as a result, its better antiviral profile.


Subject(s)
Antiviral Agents/chemistry , Quercetin/chemistry , SARS-CoV-2/metabolism , Selenium/chemistry , Viral Matrix Proteins/antagonists & inhibitors , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Chlorocebus aethiops , Humans , Hydrogen Bonding , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Quercetin/metabolism , Quercetin/pharmacology , SARS-CoV-2/isolation & purification , Selenium/metabolism , Vero Cells , Viral Matrix Proteins/metabolism , Virus Replication/drug effects
11.
J Virol ; 95(4)2021 01 28.
Article in English | MEDLINE | ID: covidwho-1054610

ABSTRACT

Among seven coronaviruses that infect humans, three (severe acute respiratory syndrome coronavirus [SARS-CoV], Middle East respiratory syndrome coronavirus [MERS-CoV], and the newly identified severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) are associated with a severe, life-threatening respiratory infection and multiorgan failure. We previously proposed that the cationically modified chitosan N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) is a potent inhibitor of human coronavirus NL63 (HCoV-NL63). Next, we demonstrated the broad-spectrum antiviral activity of the compound, as it inhibited all low-pathogenicity human coronaviruses (HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1). Here, using in vitro and ex vivo models of human airway epithelia, we show that HTCC effectively blocks MERS-CoV and SARS-CoV-2 infection. We also confirmed the mechanism of action for these two viruses, showing that the polymer blocks the virus entry into the host cell by interaction with the S protein.IMPORTANCE The beginning of 2020 brought us information about the novel coronavirus emerging in China. Rapid research resulted in the characterization of the pathogen, which appeared to be a member of the SARS-like cluster, commonly seen in bats. Despite the global and local efforts, the virus escaped the health care measures and rapidly spread in China and later globally, officially causing a pandemic and global crisis in March 2020. At present, different scenarios are being written to contain the virus, but the development of novel anticoronavirals for all highly pathogenic coronaviruses remains the major challenge. Here, we describe the antiviral activity of an HTCC compound, previously developed by us, which may be used as a potential inhibitor of currently circulating highly pathogenic coronaviruses-SARS-CoV-2 and MERS-CoV.


Subject(s)
COVID-19 Drug Treatment , Chitosan/analogs & derivatives , Coronavirus Infections/drug therapy , Middle East Respiratory Syndrome Coronavirus/drug effects , Quaternary Ammonium Compounds/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/virology , Chitosan/pharmacology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Humans , Middle East Respiratory Syndrome Coronavirus/metabolism , Middle East Respiratory Syndrome Coronavirus/physiology , Pandemics , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
12.
Journal of Virology ; 2020.
Article | WHO COVID | ID: covidwho-324338

ABSTRACT

Currently, there are four seasonal coronaviruses associated with relatively mild respiratory tract disease in humans. However, there are also a plethora of animal coronaviruses, which have the potential to cross the species border. This regularly results in the emergence of new viruses in humans. In 2002 SARS-CoV emerged, to rapidly disappear in May 2003. In 2012 MERS-CoV was identified as a possible threat to humans, but its pandemic potential so far is minimal, as the human-to-human transmission is ineffective. The end of 2019 brought us information about the SARS-CoV-2 emergence, and the virus rapidly spread in 2020 causing an unprecedented pandemic. At present, the studies on the virus are carried out using a surrogate system based on the immortalized simian Vero E6 cell line. This model is convenient for diagnostics, but it has serious limitations and does not allow for the understanding of virus biology and evolution. Here we show that fully differentiated human airway epithelium cultures constitute an excellent model to study the infection with the novel human coronavirus SARS-CoV-2. We observed an efficient replication of the virus in the tissue, with the maximal replication at 2 days post-infection. The virus replicated in ciliated cells and was released apically. IMPORTANCE SARS-CoV-2 emerged by the end of 2019 to rapidly spread in 2020. At present, it is of utmost importance to understand the virus biology and to rapidly assess the potential of existing drugs and develop new active compounds. While some animal models for such studies are under development, most of the research is carried out in the Vero E6 cells. Here, we propose fully differentiated human airway epithelium cultures as a model for studies on the SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL